
Finding Missing Automatic Vectorization Opportunity by

Differential Testing

差分テストを用いた自動ベクトル化機会の自動探索

by

Kohei Asano

浅野 光平

A Master Thesis

修士論文

Submitted to

the Graduate School of the University of Tokyo

on January 17, 2024

in Partial Fulfillment of the Requirements

for the Degree of Master of Information Science and

Technology

in Computer Science

Thesis Supervisor: Shinya Takamaeda 高前田 伸也
Associate Professor of Computer Science

ABSTRACT

In recent years, the importance of parallel computing has increased for many appli-
cations. This paper focuses on effectively utilizing vector extension instructions, which
CPU vendors actively develop. The effective use of vector extension instructions sig-
nificantly contributes to accelerating computations in deep learning. For example, in
the latest programming language, Mojo, effective utilization of SIMD instructions has
accelerated the performance of some benchmarks by up to 30,000 times compared to
Python.

Effective utilization of the current vector extension instructions requires a deep un-
derstanding of hardware and ISA. Although there are methods involving automatic vec-
torization by compilers, they cannot yet achieve the performance levels of manual opti-
mization. The most significant difficulty in automatic vectorization in the compiler lies in
the high management cost due to the diversity of hardware-dependent vector extension
instructions.

In this paper, we propose a novel method to find a missing opportunity in automatic
vectorization, based on test generation and differential testing to automatically discover
bugs and automatic vectorization optimization opportunities in compiler infrastructure.
For fully automated Automatic Vectorization management, we have developed a random
C program generator, CSmith-based test generator for automatic vectorization suitable
for vectorization, and have shown that it can efficiently insert optimization opportunities
for target-independent vectorization and that the tool is scalable. We have also used
it to generate tests for different ISAs. We also developed a comparison framework for
comparing machine programs generated for different ISA targets using LLVM statistics.
By comparing machine programs compiled from the same program for different ISA
targets, we confirmed that the difference in Automatic Vectorization performance can be
measured, and showed that it can be used as a component of the automatic discovery of
complementary Automatic Vectorization opportunities for ISA.

論文要旨

近年, 様々なアプリケーションで並行計算の重要性が増している. 本研究では CPUのベ
ンダーにより活発に開発されているベクトル拡張命令の有効活用に注目する. ベクトル拡
張命令の活用は, 深層学習などの計算の高速化に大きく寄与し、最新のプログラミング言
語Mojoでは SIMD命令の有効活用により一部のベンチマークで Pythonのパフォーマン
スを最大 30000倍以上高速化した事例もある.

現在のベクトル拡張命令の有効活用にはハードウェアや ISAへの深い理解が必要になり,

コンパイラの自動ベクトル化による方法もあるが, 手動の高速化ほどのパフォーマンスは
実現できない. 自動ベクトル化の難しさの最大の要因としては, ハードウェアに大きく依存
するベクトル拡張命令の多様性による管理のコストの高さがあげられる.

本論文では, 近年注目されているテスト生成と差分テストを組み合わせたコンパイラ基
盤のバグや最適化機会の自動探索をフレームワーク化し, それを用いた自動ベクトル化に
特化したバグ/最適化機会を自動で発見する手法を提案する. 本研究の貢献は 1. ベクトル
化の差分テストに特化したテストの生成手法の提案, 2. 異なるハードウェアターゲット向
けのコンパイルの差分の設計である. 差分テストの自動化のために, 私たちはランダムな
Cプログラム生成ツール, CSmithに基づいた, ベクトル化に適した自動ベクトル化向けの
テスト生成ツールを開発し, ターゲット非依存なベクトル化に対する最適化機会の挿入を
効率的に行えることとそのツールの拡張可能性を示した. また, それを用いて異なる ISA

ターゲットに対して生成された機械プログラムを LLVMの統計を利用して, 比較するため
の比較フレームワークを開発した. 同一のプログラムから異なる ISAターゲット向けにコ
ンパイルされた機械プログラムを比較することで, 自動ベクトル化のパフォーマンスの差
が計測可能なことを確かめ, ISAの相補的な自動ベクトル化の機会の自動発見のコンポー
ネントとして利用できることを示した.

Acknowledgements

I truly appreciate all the help my supervisor Associate Professor Shinya Taka-
maeda and my former supervisor Professor Naoki Kobayashi gave. They gave me
a lot of advice and encouragement. I would also like to thank the secretary Fu-
miko Yamaura for arranging the best environment for me to concentrate on my
research. Thanks to the best environment they created, I could have discussed
my work with my laboratory members both in Kobayashi and Takamaeda Lab-
oratory, and I must thank them for their valuable advice and encouragement. I
also appreciate my family’s overall support.

Contents

1 Introduction 1

2 Background 4
2.1 Vector Extension Instructions . 4
2.2 Difficulty on Vector Extension Instructions 5
2.3 Compiler Organization . 5
2.4 Automatic Vectorization . 6

2.4.1 SLPVectorizer . 7
2.4.2 LoopVectorizer . 7

2.5 Compiler Fuzzing . 9
2.5.1 Overview . 9
2.5.2 Components . 9

3 Vectorizer Fuzzer for Finding Missing Vectorization Opportuni-
ties 13
3.1 Overview . 13
3.2 VecFuzz Components . 14

3.2.1 Mutator: Loop-oriented Vectorize opportunities injection . 14
3.2.2 Comparator: Inter-Target Vectorizer Comparator 17

4 Evaluation 19
4.1 Effectiveness to introduce vectorization opportunities 19

4.1.1 Experimental Settings . 19
4.1.2 Experimental Environment 20
4.1.3 Number of Vectorized/Analyzed Loops and Vectorized In-

structions . 20
4.2 Effectiveness to find vectorization difference for each target 21

4.2.1 TSVC Benchmark for x86-64 with AVX512 and AArch64
with SVE . 22

4.2.2 Number of found vectorizer differences 23
4.3 Discussions and Future Work . 24

5 Related Work 26
5.1 Random Program Generator and Differential Test 26
5.2 Vectorizer Generator . 26
5.3 Enhancing Automatic Vectorization algorithm 26

5.3.1 Extended SLPVectorizer . 26
5.4 Superoptimizer . 27

6 Conclusion 28

References 29

v

Chapter 1

Introduction

In recent years, various applications such as machine learning, image process-
ing, and speech processing have attracted much attention in various areas, such
as large-scale language modeling, automated driving, and so on, where paral-
lel processing can improve execution speed. Although various parallel process-
ing paradigms have been investigated in software and hardware, CPU vendors
have devoted many resources to improving parallelism using vector extension
instruction sets. And their effective use is essential, as we see recently, Intel
has announced a new vector extension instruction set AVX-10[1], and Arm has
developed a variable-length vector instruction called Scalable Vector Extension
(SVE)[2]. If they are used well, programs can be accelerated and small in size.
For example, a recent programming language, Mojo, achieved over 30000 times
speedup compared to Python[3] by effectively leveraging SIMD instructions in a
way of designing an intermediate language that has high affinity with the poly-
hedral model for a certain kind of benchmark, like Mandelbrot set computations.

However, for other scientific or more general tasks in application development
in other programming languages such as C, C++, and Rust, the development of
software using vector extension instructions is as difficult as any other parallelism
and inevitably creates hardware dependence in compiler implementation, which
is a difficulty that requires an understanding of the hardware and results in
software with poor portability. More concretely, it is necessary to write the
assembly languages directly, a program using intrinsic instructions provided by
the processor vendor, use the compiler’s automatic vectorization, or use a third-
party library that already uses them well, depending on the application. Among
these, automatic vectorization of compilers should eliminate the need for other
methods if sufficient performance is achieved. Still, it has not yet gained enough
performance compared to other utilization methods. One of the most significant
difficulties in vector extension utilization is the target dependence mentioned
above.

As an example of hardware dependence, the differences in types of vector ex-
tension operations exist. Still, there are also differences in handling register size
among the different ISAs. For example, Intel’s x86 vector extension instruction
set uses fixed-length vector registers. In contrast, Arm’s SVE uses variable-length
vector registers for portability, although the length varies depending on the target
machine. The vector extension instruction RVV specified in RISC-V, an open-
source ISA that has been actively developed in recent years, also defines registers
with the size of vector registers and can handle variable-length vector registers.
Although each vendor employs contributors to the open-source compiler infras-
tructure, they focus on developing their targets, making their implementations
distributed and complicated. A look into review systems such as LLVM shows

1

that many patches are created for different targets, and the development cost is
high.

Solutions to this diverse vectorizer management problem have been actively
researched in recent years. The most representative examples are VeGen[4] and
Minotaur[5]. VeGen inputs ISA manual like Intel’s Software Developer Manual
(SDM) and automatically generates a C++ Vectorizer program that handles ad
hoc peephole optimization on the LLVM middle-end. Minotaur[5], as known as
SIMD-oriented Superoptimizer, performs an enumerative automatic search and
finds the profitable transformation by using LLVM Machine Code Analyzer, and
verifies the validity with the LLVM IR transformation validator, alive2[6]. How-
ever, the former still isn’t used for practical compiler development such as GCC
or LLVM because its generated code isn’t manageable for LLVM developers with
the original implementation, and the latter didn’t perform well enough because
of the complex burden of enumeration search with formal validation.

This paper focuses on automatic vectorization opportunities and bug detec-
tion in the effective use of vector extension instructions and proposes a method
that combines automatic test generation and differential testing. Test generation
using CSmith[7] or other smith tools[8, 9] is a famous approach for practical devel-
opment improvement research. And various Fuzzing for the compiler toolchains
is proposed[10, 11, 12]. They automatically find the performance regressions, or
bugs introduced by contributors’ patches, and create a smart report by bisecting
the generated test or commits. So vectorizer automatic fuzzer would alleviate
the difficulty of automatic vectorization management issues.

To create a fully automated Vectorizer Fuzzer that increases Vectorizer per-
formance and development efficiency, the design must be made to do the following
automatically.

1. Test Generation

2. Differential Testing

3. Analysis for found alert

Test generation means producing the input program that characterizes the fea-
ture to be tested; Differential Testing is the way to find the missed opportuni-
ties/bugs/regressions, and Analysis is to reduce the test to understand the root
cause found easily. These three items can apply to various kinds of differential
test-based fuzzing methods for compilers. This paper proposes Test Genera-
tion and Differential Testing with particular effectiveness for target-independent
LoopVectorizer.

This study’s key contributions are as follows.

1. A novel method to find a missing opportunity in automatic vectorization,
based on test generation and differential testing, to automatically discover
bugs and automatic vectorization optimization opportunities in compiler
infrastructure.

(a) A test generation method specialized for vectorization opportunities,
based on random C program generator CSmith[7] and Clang AST
Transformer.

(b) A comparison for comparing vectorizer performance with different
hardware targets exploiting LLVM compiler optimization statistics.

2. An empirical analysis of the method to automatically find and analyze
missing opportunities or bugs found or not found by the method.

2

The remainder of this paper is organized as follows. Section 2 describes the
background for compiler organization, vectorizer, vector extensions, and recent
compiler fuzzing with moderate related work. Section 3 describes the proposed
Test Generation method, Vectorizer Mutator, and Differential Testing method
Vectorizer Fuzzer. Section 4 describes the evaluation of the proposed Vectorizer
Mutator and Vectorizer Fuzzer, and discussions with future work. Section 5
describes the related work. Section 6 concludes this paper with future directions.

3

Chapter 2

Background

In this chapter, we briefly review the design of compiler optimization with in-
termediate representations of the Vector extension and recent compiler fuzzing
research. In particular, various methods and target applications have emerged in
recent years for Fuzzing the compiler toolchain, and this chapter will attempt to
explain them in terms of a common framework.

2.1 Vector Extension Instructions

This paper defines vector extensions as instructions that handle multiple data
on single instructions specified on optional ISA extension specs for parallel data
processing. From the perspective of parallel computing, computer architectures
were classified into four major categories according to Flynn’s taxonomy: Single
Instruction Single Data (SISD), Single Instruction Multiple Data (SIMD), Mul-
tiple Instruction Single Data (MISD), and Multiple Instruction Multiple Data
(MIMD). SIMD Instructions handles arrays or so-called Vector e.g. 8 single pre-
cision floating points for 256-bit vector registers, or 16 4-byte integers for 512-bit
vector registers. Each component of the vector register is called Lane for SIMD
register or instructions and it’s used as a basic component for Target-independent
Automatic Vectorization algorithms. SISD and SIMD on Flynn’s taxonomy are
shown in Fig. 2.1. SIMD instructions also equal vector extensions, an optional
ISA extension for parallel data processing. Vector extensions have recently been
developed to focus more on domain-specific instructions. AVX512-VAES for
AES computation, AVX512-GFNI for a Redundant Array of Independent Disk
(RAID), and AVX512-VNNI for Neural Network calculations represented by dot
products. However, some researchers have distinguished vector extensions from
SIMD because new lane interchanging instructions[4], like dot products instruc-
tions used on Neural Network computations, seem to have multiple operations,
not a single operation. Let us see an example of such instructions on the x86
AVX-512 and Arm SVE, focused instruction sets on this paper. SSE instruction,
a vector extension for x86, has a single instruction ADDSUBPD with semantics
like Figure 2.2. Still, it is called non-SIMD in [4] because two operations, ad-
dition, and subtraction, are performed for each lane interchangeably. Since the
optimization for such instructions is not fully handled by the generalization of
the SLPVectorizer described later, such lane interchanging cases are handled by
ad-hoc peephole optimization. On Armv8 SVE, we can port ADDSUBPD with
ADDHNB (Add narrow high part) and SSUBWB (Signed subtract wide).

Another example of domain-specific vector extension instruction on x64 is
the VPDPWSSD 2.3, its lane size operation is not on Arm SVE, but a variant,
VPDPBUSD, corresponds with sdot in Armv8 SVE. That is x86’s dot product in-

4

Figure 2.1: SIMD and SISD on Flynn’s taxonomy

Figure 2.2: Lane Diagram for VADDSUBPD Reproduced from [13]

structions for neural network computations on AVX512-VNNI (Advanced Vector
eXtension Vector Neural Network Instructions) instructions.

2.2 Difficulty on Vector Extension Instructions

As described above, instruction sets of major architectures, e.g., AArch64 Neon
and SSE2, correspond on each instruction kind, but some instructions, such as
PMOVMSKB on SSE, are absent on Neon. Also, for vector widths and their
specifications, they are dispersed. In particular, regarding fixed or variable vec-
tors that increase the compiler’s automatic vectorization implementation’s com-
plexity, we will discuss those with fixed-length vectors and instruction sets with
variable-length instructions. Variable length vector operations are proposed for
programs having portability for scalability, especially in supercomputing. Fixed
length vector extensions are Arm’s NEON, x86’s SSE, and AVX series vector ex-
tensions. The representative for variable length vector extension is the Scalable
vector extension of the Arm, also used in Japanese Super Computer Fugaku, and
RISC-V RVV is a variant for variable length vector extension in the point using
the register to set the dynamic length for vector operations.

2.3 Compiler Organization

Modern programming language processing systems implementations are designed
using intermediate representations to divide optimization and verification func-
tions into separate modules, as LLVM[14, 15] does. This creates independence of
the developer’s responsibilities and avoids implementation fragmentation. How-
ever, at the same time, it makes integrated behavior complex and challenging
to analyze the causes of regression/bugs. Whether the division into modules is
good or not is a question of subtlety, and some people prefer to integrate them[16].
For example, Instruction Selection, the conversion from an independent interme-
diate representation to a target-dependent intermediate representation, is also
changed from Basic Block unit implementation to Global implementation from

5

Figure 2.3: Lane Diagram for VPDPWSSD (AVX512-VNNI) Reproduced from
[13]

the viewpoint of compile time. [17] Against this background, the management
and performance tuning of compiler optimization is a complicated problem, and
black-box analysis methods using Fuzzing[10, 11, 12, 7] and other methods are
being studied, as described later. The compiler optimization modules are or-
ganized in order of target dependency. In the case of LLVM, the optimization
modules are organized so that standardization optimization,e.g., dead code elim-
ination, peephole optimization, loop invariant code motion, etc, comes first, fol-
lowed by less-canonical or target-dependent optimization,e.g., aggressive inlin-
ing/loop unrolling, vectorization, and other target-specific optimization. Among
standardization and target-dependent optimization, the problem of the order of
various compiler optimizations, such as loop optimization, DCE, and peephole
optimization, is an unsolved heuristic problem following inline expansion. Some
research exists on its ordering by machine learning. [18] Vectorization, which is
the focus of this paper, comes first among the target-dependent optimizations.
A new target-independent IR MLIR [19] has also been proposed as a solution to
the implementation variance and complexity of intermediate representations in
various programming languages by allowing the representation of object lifetime
and graph structures that LLVM IR could not represent. MLIR is a first-class
concept of polyhedral loop optimization, which is easier to optimize specifically
for parallel computation than existing intermediate representations and MLIR is
also used for hardware description as an intermediate representation of high-level
synthesis since it is designed in a way that allows the description of graph struc-
tures. [20] Recently, a language using MLIR, Mojo, has been developed, which is
much faster than Python by utilizing SIMD instructions [3]. MLIR is excellent
in terms of optimization performance in specific examples. Still, it has not yet
replaced the backends of many generally used languages, so we target the more
widespread LLVM IR in this paper.

2.4 Automatic Vectorization

Modern general-purpose processors have scalar operation instructions, which gen-
erally take 64/32-bit operands and produce 64/32-bit operands as core ISAs. A
compiler optimization that converts a scalar program consisting of scalar opera-
tions into a vector program that uses vector extension instructions as described in
the previous section, is called Vectorization, especially in the context of compiler
optimization, and Automatic Vectorization in the context of compiler optimiza-
tion. There are two main types of Automatic Vectorization algorithms: target-

6

independent and target-dependent. The latter is mostly just ad-hoc peephole
optimization. The former target-independent and practical compiler automatic
vectorization algorithm consists of Straight code vectorization; the most famous
one is Superword-Level Parallelism Vectorization [21, 22], and Loop Vectorization
components. For example, the former is called SLPVectorizer in LLVM, while
the latter is called LoopVectorize. As described below, the distinction between
them is not essential from an algorithm perspective, and some studies propose
a unified Generalized SLP[22]. Also, target-independent IR, like LLVM IR, has
vector-oriented peephole optimization done in the name of VectorCombine, like
InstCombine, the general LLVM IR peephole optimization PASS. For existing re-
search, VeGen[4], Vectorizer Generator inputs Developer manuals published from
CPU-vendor, and produces ad-hoc peephole optimization codes handles LLVM
IR with calculating the original cost model. Minoraur[5], SIMD-oriented Super-
optimizer, searches ad-hoc peephole optimization patterns enumeratively using
LLVM IR transformation validator alive2[6]. We tackled the Complementary
searching of opportunities, especially between variable-length and fixed-length
vectors, for target-independent optimization patterns and, in the future, target-
specific optimization patterns.

2.4.1 SLPVectorizer

SLPVectorizer is also called a Straight block vectorizer. In contrast to Loop
level optimizations, the SLPVectorizer is an automatic vectorization method for
instruction levels. Like Figure 2.4 shows, it creates a tree of instructions and
vectorizes the scalar instructions tree by grouping isomorphic operations on an
instruction-by-instruction basis. Before vectorizing the scalar tree, it calculates
the cost model to decide whether using vector instructions is profitable with the
vector operand loading overhead tradeoff. This cost model calculation heuris-
tic is improved year by year like various SLP variants [23, 24, 25]. Except for
transformations of auxiliary structures such as loop unrolling, etc, the vector-
izer is separated from LoopVectorize and performed on a basic block-by-block,
instruction-level basis. The components are separated from LoopVectorize, de-
scribed below, to simplify implementation, but cases where instruction-level vec-
torization can be performed across control structures are often overlooked. For
example, since LoopUnrolling does not maximize vectorization opportunities but
only looks at the tradeoff with binary size, it may miss SLPVectorization oppor-
tunities that LoopUnrolling could discover. LoopUnrolling may miss discoverable
SLPVectorization opportunities. Research such as [26], which proposes a suitable
LoopUnroll for SLPVectorizer purpose, and Generalized SLP[22], which offers an
IR for finding vectorization opportunities on inter-control structure, have emerged
in recent years.

2.4.2 LoopVectorizer

The Loop is the control structure with the most room for parallelization. Al-
though a polyhedral model for loop optimization is proposed in the context of
the Deep Learning compiler[27], the general compiler doesn’t do polyhedral anal-
ysis by default but with more heuristic loop analysis and cost model calculations
because of compilation time and complexity tradeoff. The vectorization of Loop
is implemented as a separate component from the vectorization of other instruc-
tions, which is familiar to both GCC and LLVM. The LLVM implementation
consists of the following three steps[28]

7

Figure 2.4: SLPVectorization

1. Legality check

2. Profitability check

3. Transformation

Legality check

Verify that the Loop can be rewritten by vector extension instructions, such as
whether it uses induction variables, whether it performs calculations that are
multiplied by the Reduction structure, whether memory access dependencies do
not cross loops, and whether there are aliases in the case of multiple pointers.

Profitability check

Vector extension instructions should not be used whenever they are available. The
execution of vector extension instructions is subject to restrictions on operand
alignment, and even if the operation itself is parallel and effective, loading the
values into the vector registers required to execute the operation is also expensive.
We look at the cost model and variable alignment defined for each Target to
estimate whether the vectorization of the loop operations will be efficient. The
hardware vendor should manage this, but as a matter of fact, models managed
directly by the vendor are not accurate either. It is also well known that the
x86-64 cost model in LLVM is managed by Sony engineers[16]. As is also the
case with SLPVectorizer, accurate cost model management is essential. Cost
model management has also been studied using machine learning methods such
as Ithemal[29].

Transformation

If the legality and profitability are guaranteed, the transformation is finally per-
formed.

8

Figure 2.5: Comparison of prior Compiler Fuzzing methods

2.5 Compiler Fuzzing

2.5.1 Overview

In recent years, there has been a lot of research on automatic search for bugs and
optimization opportunities in open-source compilers such as GCC and LLVM,
using CSmith as a base for test generation to reduce the cost for compiler de-
velopers. DEAD, Dfusor, and UBfuzz[10, 11, 12] all find and report Issues by
Fuzzing practical compilers. Dfusor[11] for automatic detection of binary mis-
match with Debug compilations, UBfuzz for detection of False Negative (false
alerts for programs that do not contain undefined behavior) bugs in Undefined
Behavior Sanitizer, UBfuzz[12] for finding False Negative (false alerts for pro-
grams that do not contain undefined behavior) bugs in the Undefined Behavior
Sanitizer, and DEAD Code Elimination DEAD[10], which performs optimiza-
tion evaluation focusing on Dead Code Elimination. DEAD finds optimization
regressions, Dfusor finds consistency between debug and release profiled builds,
and UBfuzz finds false negative alerts in the sanitizer. All of these are reported
differently, but the methods used should be the common framework applicable
to other compiler toolchain management fields. This section will attempt to
generalize and explain this common property.

Figure 2.5 is the Comparison matrix table for existing Compiler Fuzzing
works, and more visually pictured by Figure 3.1 for vectorizer purposes, as this
paper proposes. Roughly, the steps of Compiler Fuzzing can be divided into 1.
Test Generation, 2. Difference Testing, and 3. Analysis. Test Generation com-
prises Generator and Mutator Difference Testing from the Compiler and Com-
parator and Analysis from the Reducer. Each component will be described as
the following in comparison with related studies.

2.5.2 Components

Generator

Compiler Fuzzing needs to generate seed programs for differential testing. The
first tool for this purpose is CSmith[7], a tool to generate C programs with vari-
ous language features that do not include undefined behaviors. And other tools
inspired by CSmith have been proposed recently[8, 9]. The actual generated
program by CSmith is as follows.

9

…

i n t 8 t ∗∗∗∗ l 9 6 2 [1 0] [8] [3] = {{{&g 891 , . . . } } } ;
i n t 1 6 t l 1199 = 7L ;
const union U0 ∗ l 1 240 = &g 247 ;
u i n t 6 4 t ∗∗∗ l 1 246 = &g 452 ;
i n t 3 2 t l 1364 = (−1L) ;
u i n t 3 2 t l 1408 = 4294967295UL;
int i , j , k ;
for (i = 0 ; i < 9 ; i++)
{

for (j = 0 ; j < 1 ; j++)
{

for (k = 0 ; k < 1 ; k++)
l 5 9 8 [i] [j] [k] = 0UL;

}
}
for (i = 0 ; i < 2 ; i++)

l 6 2 0 [i] = &l 6 2 1 [1] [0] [2] ;…
CSmith generated a randomly structured program like the one above, and the
original purpose of CSmith is to use them as test cases for compilers to see if they
do not crash or are incorrectly optimized by checking hash for global variables
and return value. Many related studies use it as seed programs and transform
them into programs with the respective properties of interest. To target LLVM-
based language processing systems, which are often the target of vectorization
and have various front ends and targets, we attempt to generate C programs
using CSmith and then convert them to a form specialized for judging vector-
ization performance. As shown in Figure 2.5, many related studies use CSmith.
We believe this is because CSmith is easy to use since it generates programs that
do not contain Undefined Behavior. Dfusor uses yet other random C program
generators tkfuzz[30] and Hermes[31].

Mutator

Programs generated with CSmith can optionally be given restrictions on the lan-
guage features used by the program they generate, such as whether to include
volatile variables (−−no−volatiles), whether to take standard input (−−no−argc),
and so on. However, we do not know whether they have the necessary properties
for the bugs or opportunities we wish to find. Therefore, for efficient and effective
finding, it is necessary to transform the generated programs into programs with
the properties of interest. For example, in the case of a program like UBfuzz[12]
that is specialized for Sanitizer bugs, CSmith is guaranteed to generate a program
that does not contain any undefined behavior, so the following macro can be in-
serted and used to cause an out-of-domain reference or signed integer overflow in
array accesses.

10

i n t 3 2 t MUT VAR = +(2147483645) /∗UBFUZZ∗/ ;
#define INTOPR0 +(MUT VAR)
#define INTOPR1
. . .

a = ((((a++) INTOPL1)
+ ((1) INTOPL0)) INTOPR1)
+ ((++c) INTOPR0) ;

. . .

In the method proposed in this paper, we use the Clang AST Transformer
API as in the related work. By using that, we transform the C program generated
by CSmith into 1) the program has the array alignment to 128 bytes alignment
and the size of 4096 for each dimension, and 2) has sufficiently bigger size of
loops in which the induced variables of the program are incremented. As we
will see later in the evaluation section, this sufficiently increases the vectorization
opportunities of LoopVectorize but has little effect on the SLPVectorizer. As
we may have learned from the background description, it would be better to
prepare a set of pre-packable isomorphic instructions at points in the various
control structures and insert them for the vectorization opportunities targeted at
the SLPVectorizer. Preparing and inserting pre-packable instructions at various
points in the control structure would be a good idea.

Compiler Driver

After generating a program containing the properties to be verified by Mutator,
compile the program to compilers with various profiles to be compared with other
profiles. The target of the compilation depends on the property to be verified
and the structure of the compiler’s intermediate representation. In the case of
dead[10], the compilers are GCC and Clang, each with different versions and
optimization levels for the same compiler. In the case of dead, the comparator
described below uses macros, so regressions can be found because the compilation
results can be compared using dead code marker metrics on Dead Code Elim-
ination. Dfusor[11] compiles with the same optimization level and whether the
debug information is valid to see the Compilation Consistency Modulo Debug
Information, which shows no binary difference of binary on debug build from re-
lease build, and the UBfuzz compiles without optimization and with optimization
to see the false negative alert of undefined behavior sanitizer. Having represen-
tations in which Reduction can be easily performed is also desirable.

Comparator

Compare the compilation results so that the properties you want to detect are
known. In the case of DEAD, we compare different compilation results focusing
on the program’s control structure to see if the inserted macro has disappeared.
We can compare programs by total order, and we can find the regression regarding
dead code elimination. Dfusor compares instructions and finds the difference
between release and debug build. Not only program comparison but also dynamic
analysis of the program would work to see the program characteristics; UBfuzz
uses debug information to see if the undefined behavior happens in the exact
location.

11

Reducer

As we see in the Generator and Mutator section, the differential test program
isn’t good for humans to understand or debug based on that. First, CSmith
produces massive redundancy and unnecessary complexity, so we must reduce it.
CReduce [32] is the popular tool for test reduction for various languages. Since
the goal of Compiler Fuzzing[10] is to find regressions related to optimization
for compiler development, undefined behavior might be a false alert, which can
be optimized away in any way if the instruction is executed or the value is used
depending on the semantics of the language. To prevent that DEAD uses a
program verifier CompCert[33] to see if undefined behavior is contained in the
tests when regression candidates are found. Also, DEAD can bisect the repository
commit log to identify the commit from which the regression originated and so
on. Such engineering is also important since the main purpose of this field is to
improve the ease of debugging in actual compiler development.

12

Chapter 3

Vectorizer Fuzzer for Finding Missing

Vectorization Opportunities

In this chapter, we describe our proposal of Fuzzing for Compiler Vectorizer. As
mentioned in the Introduction, to achieve fully automated compiler fuzzing, we
should design the following three elements

1. Test Generation

2. Difference Testing

3. Analysis

We propose and implement a novel method for Test Generation and Difference
Testing that is effective for target-independent Automatic Vectorization algo-
rithms, especially for LoopVectorize. First, an overview of the proposed method
is given, followed by a description of each Component corresponding to the Frame-
work of Compiler Fuzzing described in the previous chapter.

3.1 Overview

Figure 3.1 is an overview of the proposed Vectorizer Fuzzer. Briefly saying each
component works as follows.

1. Generator Test program generation with CSmith.

2. Mutator: Mutate the program generated by CSmith for Vectorizer Differ-
ential Test (VecMut).

3. Compiler Driver: Compile the mutated test program with different target
information or different compilers.

4. Comparator: Make the compiled results comparable and compare them.

5. Reducer: Reduce the original program when a test case is found.

Two points of particular interest are as follows

• Test Mutation using Clang AST to introduce Automatic Vectorization op-
portunities

• Comparator for finding the quantitative difference of two Vectorization

13

Figure 3.1: Overview of proposal Vectorizer Fuzzing

We use C-compiler Clang for the compiler frontend, which is based on uni-
versal compiler infrastructure LLVM, and Generator and Reducer are based on
CSmith/CReduce, respectively. We do not make any restrictions on the language
functions for CSmith generation, so that we can see various patterns for vectoriza-
tion. The Legality Check of Vectorization should also determine whether aliases
are present and whether or not they are volatile, so there are no restrictions on
pointers, and various program language features CSmith supports.

3.2 VecFuzz Components

3.2.1 Mutator: Loop-oriented Vectorize opportunities injection

First of all, in conclusion, we implemented the following three types of trans-
formations for injecting vectorization opportunities for programs generated by
CSmith.

1. Enforce the declaration alignment of any dimensional array to 128-byte
alignment.

2. Set the size of the array to 4096.

3. Change incremental loop bound to 4096.

They are mainly motivated to introduce beneficial loops for vectorization on
any targets.

First, to know the rationale above transformations, let us observe the loop
program generated by CSmith. Listing 3.1 is the part of the program generated
by CSmith that contains the loop.

14

Listing 3.1: Loop Program generated by CSmith[7]

. . .
/∗ −−− S t ruc t /Union Dec la ra t i ons −−− ∗/
/∗ −−− GLOBAL VARIABLES −−− ∗/
stat ic const u i n t 6 4 t g 8 [5] = {1UL , . . . } ;
stat ic i n t 3 2 t g 10 = 0x8CE3E63EL ;
stat ic i n t 3 2 t g 11 = 0L ;
. . .

i n t 1 6 t l 3217 [9] [3] [5] = {{1L , . . . } ;
i n t 1 6 t l 3231 = 0xAC06L ;
const u i n t 3 2 t l 3268 = 0xDB7395C5L ;
int i , j , k ;
for (i = 0 ; i < 6 ; i++)

l 3155 [i] = 0x5357627B9C38BE8CLL ;
for (i = 0 ; i < 1 ; i++)

l 3216 [i] = 4294967295UL;
. . .

There are a large number of loop structures used for embedding in the code
generated by CSmith. However, since the size of the loop bounds and arrays are
very small, the compiler’s cost model determines that the overhead of loading into
the vector register is dominant, and these loops are not worth it to be vectorized.

Discussing the cost model is also essential for vectorization quality. However,
we want to ignore the debate on the cost model in this article to focus on le-
gality checking joint to various hardware targets for complementary searching
of vectorization opportunities. Let us summarize the properties of an ideal test
program for complementary searching of opportunities for Vectorizer this time.
The following are the main essential aspects of tests generated by Fuzzing.

• The structure must contain various kinds of code snippets using interesting
features to be found that can be observed without being affected by other
optimizations, etc.

• The root cause of the bug or property to be found, and information that
identifies the location of the bug or property.

Regarding the first point, since the alignment of each operand, the number
of loads for the target operation, and the trip counts of every loop for the vector
register size are such that cost models are involved, we thought it necessary
first to convert the program to handle sufficiently large, properly aligned data.
To make the loop vectorizing profitable, we make the loop trip counts bigger
enough. Also, realignment is out of the discussion here; we should profitably
align the declaration of the loop using the alignas specifier introduced in the
C23 standard. In addition, LoopVectorize generally uses a scalar reminder loop,
known as an Epilogue loop, to handle the loop steps that are to be divided by
the size of the vector register. Vectorization algorithm, but how the epilogue is
handled is also important for the Loop Vectorization algorithm. Loop Vectorizing
for the loops with odd trip counts is ad-hoc. Without predicate or masking
registers like Arm SVE or x86-64 AVX-512, we need to process the remainder
of the operand size of vector instructions by the Scalar loop. That criterion is
target-dependent and not transferable for each target. The boundary between
the Vectorized loop and the Scalar Loop process is calculated using the Loop

15

Invariant and other heuristic methods, so we designed the loop size to be the
power of two larger and fully vectorizable to find the transferable vectorization
opportunities. Based on the above discussion, we decided to change the size and
alignment of the array using the Clang AST Transformer for this evaluation. We
set the alignment to 128 bytes and the size to 4096. Regarding the second point,
we have not been able to consider it in this evaluation because we used statistics
computed inside the compiler for preliminary purposes, which are location and
root cause independent. However, in the case of automatic analysis, it would be
a good idea to use debugging information, as UBfuzz did, to consider 1) whether
or not vectorization has occurred and 2) where the vectorization occurred in the
source code. In addition, mutations to programs with isomorphic instruction-
level opportunities are future work. We believe inserting multiple operations of
the same type is a good idea for basic blocks of various control structures.

Implementation

Based on the above discussion, we decided to change the C program generated
by CSmith using the Clang AST Transformer for this evaluation. We mutate
the alignment to 128 bytes and the size to 4096 automatically. Here is a brief
description of how the Clang AST Transformer can be used to write Matcher and
Replace rules. Listing 3.2 is a Clang AST Matcher that matches the declaration
of an N-dimensional array.

Listing 3.2: Clang AST Matcher for N-dimension Array Declarations

auto ArrayMatcher =
constantArrayType (

hasElementType (u n l e s s (arrayType ()))
) . bind (”arrayType”) ;

for (unsigned i = 1 ; i < n ; ++i) {
ArrayMatcher = constantArrayType (

hasElementType (ArrayMatcher)
) ;

}
return varDecl (

hasType (ArrayMatcher) ,
o p t i o n a l l y (

h a s I n i t i a l i z e r (
i n i t L i s t E x p r () . bind (” a r r a y I n i t i a l i z e r ”)

)
)

) . bind (”nDimArray”) ;

We can write a functional way to bind the AST-based matches in the above
Matcher as string variables and replace them with text using them. 3.3 is a
Rule that changes the alignment to 128 bytes and the size to 4096 for array
declarations.

16

Listing 3.3: Replacement Rule for Array Declarations

std : : s t r i n g NewSize = ”” ;
for (unsigned i = 0 ; i < n ; i++)

NewSize += ” [4 0 9 6] ” ;
return makeRule (

makeNDimensionalArrayMatcher (n) ,
f l a t t e n (ifBound (

” a r r a y I n i t i a l i z e r ” ,
changeTo (

cat (” a l i g n a s (128) ” ,
between (

be f o r e (
node (”nDimArray”)

) ,
name(”nDimArray”)

) ,
name(”nDimArray”) , NewSize , ”=” ,
node (” a r r a y I n i t i a l i z e r ”) , ” ; ”)) ,

changeTo (cat (
” a l i g n a s (128) ” ,
between (

be f o r e (
node (”nDimArray”)

) ,
name(”nDimArray”)

) ,
name(”nDimArray”) , NewSize , ” ; ”
))))) ;

Similarly, by defining and applying a Rule that changes the bounds of the loop
to 4096, all declarations and loops are mutated. For example, 3.1 is transformed
to 3.4.

Listing 3.4: 3.4 mutated by VecMut

a l i g n a s (128) i n t 1 6 t ∗ l 1 032 [4 0 9 6] ;
a l i g n a s (128) u i n t 1 6 t l 1034 [4 0 9 6] ;
a l i g n a s (128) u i n t 3 2 t l 1043 [4 0 9 6] ;
int i , j , k ;
for (i = 0 ; i < 4096 ; i++)

l 1032 [i] = (void ∗) 0 ;
for (i = 0 ; i < 4096 ; i++)

l 1034 [i] = 0UL;
for (i = 0 ; i < 4096 ; i++)

l 1043 [i] = 1UL;

3.2.2 Comparator: Inter-Target Vectorizer Comparator

In conclusion, in this complementary Vectorizer Fuzzing Comparator, we use
LLVM’s statistical tools for compiler optimization developers, especially for the
following three numbers. They are 1) the number of loops analyzed by LoopVec-
torize, 2) the number of loops vectorized by LoopVectorize, and 3) the number of
instructions vectorized by SLPVectorizer. 1) is the number LoopVectorize mod-

17

ule trying to check Legality and Profitability; it’s affected iteratively whether the
loop is vectorized or unrolled. And 2 and 3 are the number of objective structures
for each vectorizer. We compare one of those corresponding values for compar-
isons for which vectorizer we want to find the missing opportunities. Listing 4.1
is part of the output of the compile time optimization statistics for developers
for the program in listing 3.4.

In general, for Compiler Fuzzing, it would be ideal if the Comparator could
drop in metrics from assembly or binary with the following properties.

1. Two program could be quantitatively compared in interesting characteris-
tics

2. The value is proportional to the missing opportunities/bugs caused by im-
plementations, not the unique target specifications.

Regarding the first point, our statistic comparison satisfies. We can compare
target-independent vectorizer performance for each target quantitatively. How-
ever, the above optimization statistic method does not fully satisfy the latter
property mentioned earlier. Since what we are looking at in this experiment is
only the number of loops and instructions checked by the Vectorizer, we can see
which of the two compilations can Vectorize more. However, what is important
when fixing bugs is whether the difference between the two compilations is due to
the specification of the target vector extension instructions or simply an omission
in the implementation. I think it is a sound algorithm because when there is an
actual implementation difference, there is also a statistical difference, but design-
ing the metrics more into ISAs for each target would make the tool more useful
for compiler developers. More ideas will be discussed in Future work. DEAD[10]
is the same; found opportunities are not always tractable. For vectorizer cases,
this requires a lot of knowledge about comparing architectures, what is common
to them, and what is not. For our evaluations, to reduce these kinds of differences
caused by specifications, make the hardware specs the same as well as possible,
e.g., machine register size, numbers, and cache line sizes, while keeping the inter-
esting differences as it is, e.g., variable or fixed size vector registers. Also, we can
cover these subtle missed opportunities by reducing the program while keeping
the same characteristics as the original one.

18

Chapter 4

Evaluation

In this chapter, we describe the experiments we conducted to evaluate the effec-
tiveness of the Vectorizer Fuzzer. We will experimentally show Test Generation
and Differential Testing are realized regarding the Vectorizer Fuzzer, out of the
three compiler fuzzing elements, as shown in the introduction. The two objectives
of the evaluation at this stage are

1. CSmith + Vectorizer Mutator can generate appropriate tests for the differ-
ence test of Automatic Vectorization.

2. we can observe the difference in Vectorization between AArch64 SVE and
x86-64 AVX-512 compilations.

Corresponding to each objective, the following two types of experiments were
conducted. The details of the settings, etc., are described in the theory of each
evaluation.

1. Two programs, the C program generated by CSmith and its mutated version
by Mutator for Vectorizer Fuzzing, were compiled for a model with AVX-512
on Intel x86-64. Compare the number of optimizations of LoopVectorize
and SLPVectorizer.

2. Two programs, the C program generated by CSmith and its mutated version
by Mutator for Vectorizer Fuzzing, were compiled for the model with Armv8
SVE and the model with AVX-512 on Intel x86-64. Compare the obtained
numbers with the compiled results.

The first experiment, this kind of experiment is also done to show the ef-
fectiveness of test generation on Dfusor[11]. Also, for the second experiment,
we benchmark the TSVC for the Arm SVE and x64 AVX-512 and show those
targets’ original potential for vectorizing.

4.1 Effectiveness to introduce vectorization opportunities

In this section, we will check whether the VecMut described in Chapter 3 increases
the opportunity of the Vectorizer.

4.1.1 Experimental Settings

For this evaluation, we will use the stats of SLPVectorizer and LoopVectorize,
target-independent vectorizers provided by the developer of LLVM. 1) Compile
the program generated by CSmith as it is, 2) Apply VecMut to the program gen-
erated by CSmith and compile it, and compare the Stats of the two compilations.

19

For example, Listing 4.1 is a part of Stats compiled by CSmith. We can see
various optimization stats for each optimization module in LLVM.

Listing 4.1: LLVM Statistics Example

. . .
308 aa − Number o f MustAlias r e s u l t s

15782 aa − Number o f NoAlias r e s u l t s
3 argpromotion − Number o f dead po in t e r . . .

446 assume−q u e r i e s − Number o f Quer ies . . .
13 loop−v e c t o r i z e − Number o f l oops analyzed . . .

4 loop−v e c t o r i z e − Number o f l oops v e c t o r i z e d
. . .

The target is x86-64 avx512, using the option ignoring the SLPVectorizer
cost model to omit the cost model discussions. This experiment relies on LLVM
because of the use of LLVM internal statistics. Still, it could also be verified
for GCC, or compilers developed by Intel or Fujitsu if there were compiler-
independent, black-box vectorization metrics that could be quantitatively known,
but that search is future work.

4.1.2 Experimental Environment

We experimented with Ubuntu 20.04 running on Intel Xeon Gold 6326 16c/32t
x2, 256GB, Optane Memory 1024GB. The version of LLVM Clang under test is
18.0.0 (5d59e97e88), with assertion disabled and statistics enabled release build.
The version of CSmith was 2.4.0 (92069e4).

Implementation

The proposed method was implemented in C++. Among the implementations,
VecMut was implemented using the Clang AST Transformer API. Also, VecMut
performs transformations as described in Chapter 3.

4.1.3 Number of Vectorized/Analyzed Loops and Vectorized Instruc-
tions

The programs generated by CSmith 10,000 times are mutated by VecMut and
compiled with Clang 18.0.0 with the stats option enabled. Its overall execution
took about eight hours.

Figures 4.3, 4.1, and 4.2 are histograms representing the results of this exper-
iment. The horizontal axis is the value of stats, the vertical axis is the number of
test cases that have corresponding values, and the dashed line in the figure rep-
resents the corresponding colors’ average. Blue is the corresponding stats value
when compiled using CSmith as-is, and red is the corresponding stats value when
VecMut is applied. Figures 4.1 and 4.2 show that VecMut increased the number
of loops to analyze by an average of 67% and the number of loops to vectorize
by an average of 60 % increase in the number of loops to vectorize. Although
we cannot analyze the details of this compilation because it is −O3 and is af-
fected by other LoopUnrolling and LoopInterchange optimizations, The fact that
the number of Analyzed loops has increased indicates that VecMut increases the
number of vectorization opportunities or suspicious loop structures. Namely, this
means that the number of loops that the LoopVectorizer determines if it can vec-
torize using the Legality and Profitability Check has increased, The vectorized
loops number also increased, which might have increased the analyzed numbers

20

Figure 4.1: Number of loops to analyze in LoopVectorize: After VecMut - red,
CSmith - blue

Figure 4.2: Number of loops to vectorize in LoopVectorize: After VecMut - red,
CSmith - blue

in the chain. This means that the goal of this evaluation, ”CSmith + Vector-
izer Mutator can generate appropriate tests for the difference test of Automatic
Vectorization,” was achieved when LoopVectorize was used as the target. How-
ever, for the SLPVectorizer, it is impossible to generate appropriate tests. There
is almost no change between using the CSmith test program and applying Vec-
Mut, this is since, this time, only Mutation was focusing on the Loop structure,
not isomorphic instructions. To achieve finding complementary SLPVectoriza-
tion opportunities we need to further consider what kind of instructions should
be vectorized common to another target, this would be future work.

4.2 Effectiveness to find vectorization difference for each target

The above Test Generation strategy effectively shows Test Generation for the
vectorizer, but we aim to find the bugs/opportunities in the vectorizer. In that
case, the experiment conducted here is to see whether we can find the inter-
targets missing vectorization opportunities in Differential Tests between different
compilation targets. As evaluation targets, we selected ArmV5 SVE, which has
variable-length and fixed-length vector registers, and x86-64 AVX-512, which has
a fixed-length vector register. In particular, we wanted to focus on variable-length

21

Figure 4.3: Number of instructions to vectorize in SLPVectorizer: After VecMut
- red, CSmith - blue

Table 4.1: SVE and X86 TargetTransformInfo on Evaluation

Target
Fixed Vector

Register Width
Scalable Vector
Register Width

MinVector
Register Width

x86-64 AVX512 512 0 128
AArch64 SVE 512 128 64

vs. fixed-length vectorization. This is because variable-length vectors require
tricky handling in Vectorizer and even in verifiers such as Sanitizer, alive2[6],
etc., and many implementations are incomplete. However, inherently, variable-
length vector registers should have more optimization opportunities than targets
with fixed-length vector registers. So, this time’s objective is to find the missing
vectorization opportunities between fixed-length and variable-length vectoriza-
tion complementary opportunities.

Also important here is to figure out if the hardware model properties of the
targets being compared are relatively close or if there is a dominant relationship
between one or the other. In truth, we need to ensure that ISA’s semantics are
fully inclusive; that would be another work in the future. Still, here, we configure
the abstraction, TargetTransformInfo, which represents the target-independent
values used in LLVM’s optimization path, the same value as possible as we can
for the values that LoopVectorize and SLPVectorizer refer to. The table of target
hardware values in this evaluation is shown in Table 4.1. We might know in
this setting that the target, Arm with SVE, should be more powerful than the
target, x64 with AVX-512, regarding the Vectorization-related hardware model
conceptually, but it should be better to evaluate it experimentally for major
benchmarks.

4.2.1 TSVC Benchmark for x86-64 with AVX512 and AArch64 with
SVE

For the general benchmark of automatic vectorizing compilers [34, 35], we plot-
ted the vectorizer statistics when compiling/cross-compiling with LLVM Clang
version 18.0.0 (5d59e97e88) using Ubuntu 20.04 running on Intel Xeon Gold
6326 16c/32t x2, 256GB, Optane Memory 1024GB, same to the experiments
in the previous section. The commands used for AVX512 are the same as in

22

Figure 4.4: Vectorizer related stats for TSVC benchmark for Intel x86 with AVX-
512 and ArmV8.5 with SVE

the previous section, and the commands used for Arm64 SVE changed the tar-
get and fixed vector register size by −target aarch64, −march=armv8.5−a+sve
−msve−vector−bits=512

Figure 4.4 is the result. In the TSVC2 benchmark, the Vectorizer performs
better on the SVE with variable-length vector registers, which seems rational
from the hardware register size settings from Table 4.1.

For a famous benchmark like TSVC2, it seems naturally well implemented,
and the number of Vectorized SVEs can take a greater variety of vector lane sizes.
The next section will examine the differences in CSmith-based programs between
SVE and AVX-512.

4.2.2 Number of found vectorizer differences

As in the previous section, the programs generated by CSmith 10,000 times are
transformed by VecMut and compiled with Clang 18.0.0 with the stats option
enabled. Compare the compiled stats for Intel x86 with AVX-512 and ArmV8.5
with SVE. Note that Armv8 is cross-compiled on x86 machines.

The sum of the differences in the statistics related to the Vectorizer found is
summarized in 4.2. First, we can consider that the SVE target contains actual
bugs and opportunities since there are many situations where the x86 side excels
as stats against the variable length concepts and a previous experiment. In
contrast, the x86 target may have fewer vectorization opportunities than the Arm
target. As for SLPVectorizer, it is difficult to know if it is a bug or not without
reduction because of the large instruction dependence and the complexity of the
cost model calculation. In the same way, the results when a file like the one
generated by CSmith is given as input as is are also plotted4.3. As we saw in the
experiments in the previous section, for LoopVectorize, there are clear differences
that can only be found after applying VecMut. This could also be evidence for
the effective mutator. As for SLPVectorizer, differences hidden by VecMut and
differences found by VecMut are 78 and 77, respectively. Therefore, it cannot
be said that the VecMut implemented in this study generated effective code for
verifying the SLPVectorizer.

23

Table 4.2: Number of Loops/Instructions that LoopVectorize/SLPVectorizer vec-
torized more out of 10000 trials of VecMut after CSmith on Intel x86 with AVX-
512/ArmV8.5 with SVE

Target LV vectorized SLP instructions

x86-64 AVX512 + 9 92
AArch64 SVE + 15 201

Table 4.3: Number of Loops/Instructions that LoopVectorize/SLPVectorizer vec-
torized more than Intel x86 with AVX-512/ArmV8.5 with SVE out of 10000 trials
using CSmith as is

Target LV vectorized SLP instructions

x86-64 AVX512 + 0 90
AArch64 SVE + 0 204

4.3 Discussions and Future Work

Analysis and Reduction for the difference

The numbers may be mostly structure-specific, introduced by the Mutator this
time, e.g., bigger alignment and 4096-sized loops and arrays. So, the number
seen here might have been attributed to just one bug or missed opportunity. To
avoid this, we can randomly set the loop bounds and array size big enough to
ignore the cost model because that’s one room for the opportunities. Also, the
automatic reduction is necessary to analyze the above program to search in the
complicated CSmith-based program for the root cause of those differences. This
should be possible if we do CReduce[32] in the same way as DEAD[10] while
comparing the size of the statistics found, but this has not yet been done here.
CReduce allows users to describe an interesting test and bisects the program with
various heuristics while ensuring the program passes the test. Although the fact
that differences exist is intriguing, we still need to do more analysis about that.

Backend Ad-hoc Peephole Optimization Opportunities

This time, the Comparator’s design aimed to detect the difference in Vectorization
that occurred in the target-independent middle-end. Still, since it is middle-end
stats, it is naturally less effective for the backend part of the Vectorizer implemen-
tation, especially target-dependent Ad-hoc peephole optimization pattern caused
by cost model and instruction kinds. In particular, to search for ISA-specific
peephole optimization patterns in Target, it would be better to use the seman-
tics of vector extensions support system Z3[36] or its applications, which handles
axiomatically for ISA instructions, such as Minotaur[5] and VeGen[4] does. In-
herently, target-independent missed opportunities and target-dependent missed
opportunities might be better handled separately since mixing them would be
too complicated and blurry for feedback. Lane Level Parallelism proposed by
VeGen[4] is particularly interesting. It would be good to consider using LLP
for Comparison on Differential Testing. Also, it can be used to extend the cur-
rent target-independent algorithm, SLPVectorizer implementation, cause LLP is
proposed as an extension to SLP.

24

Random twiddling of control structures, optimization

The Mutation on this Fuzzing focused on the middle-end of the compiler loop
structures this time and experimented with a single preset optimization option
−O3. However, the current middle-end optimization is generally a very complex
and black-box approach, as it depends on the order of optimization, like the op-
timization performance problem as known as PhaseOrdering[18] in the LLVM
community. We believe that a method such as Twiddling optimization attributes
like DEAD[10], Dfusor[11] randomly would be effective in this Vectorizer-oriented
fuzzing as well. DEAD changes the options for CSmith test generation depend-
ing on the random number. Dfusor adds various optimization attributes (Fine
control optimization) and transforms the control structure (Random Code Low-
ering) in Test Generation, the Mutator phase on Compiler Fuzzing. In particular,
we believe that general mutations related to control structures, such as obfusca-
tion techniques, are adequate for the Vectorizer Fuzzer. Although only Stats was
used for comparison this time, if the focus is on the middle-end, a more struc-
tural comparison could have been made using LLVM IR and its Control Flow
Graph(CFG) structure with debugging information added or IR of alive2 from
which conversions can be made. LoopVectorize can change the program’s control
structure significantly when optimization is performed, such as when both Scalar
and Vector loops are used. A Comparator focusing on the structure of CFGs in
LLVM IR might also be practical if implemented.

Cost Model Fuzzing, Dynamic Comparison

As mentioned repeatedly in the proposed method, one of the design policies for
fuzzing is to ignore the cost model and focus on finding the common optimization
opportunities between targets. As a command, it is implemented to invalidate
the cost model calculated by SLPVectorizer. So, the missed opportunities at-
tributed to the cost model are harder to find on this Fuzzing. If Reduction works
normally, it will be easier for compiler developers who are familiar with a target
to analyze the cost model afterward, and thus, with the above-mentioned minor
innovations, Fuzzing like this may be used as Fuzzing about the cost model. In
addition, the cost model of the current ISA is often done through experiments
by compiler developers, and the testing method itself is left to the hands of in-
dividual developers, so there is a constant debate about the validity of the cost
model. In particular, the metrics used in the Comparator need not be limited to
those that can be statically obtained at compile time. Even without an actual
device, a simulator such as qemu[37] may be able to automate the management of
cost models with a certain degree of accuracy measured by developers’ machines.
Also, it is possible to dynamically analyze the frequency of use of vector regis-
ters, etc., so it may be possible to perform more accurate reduction and analysis.
Dynamic analysis may be a good idea to try.

25

Chapter 5

Related Work

5.1 Random Program Generator and Differential Test

CSmith[7], used in this study, is a tool for generating random C programs.
CSmith is proposed as a differential testing tool by hashing global states and
return values to see if the compiler crashes or mis-compiles. Of course, the range
to be tested by CSmith is limited, and optimization performances cannot be mea-
sured by CSmith itself, so many Differential Testing variants with Mutator are
proposed as we see in this paper repeatedly[10, 11, 12].

Following this example, compiler test generators for other languages have
recently been proposed in various domains. For example, NNSmith[9] for deep
learning compilers generates random complicated ONNX neural network models
to do fuzzing DL compilers, and RustSmith[8] is used for Rust compiler.

5.2 Vectorizer Generator

Lane Level parallelism (LLP), a more generalized version of SLP[21, 22] char-
acterized by uniformity of operations and high operand, is proposed by Chen
et al. [4]. VeGen, which uses LLP internally, automatically generates code for
ad-hoc peephole optimization on the backend of LLVM based on the vendor’s pub-
licly available developer manual. This tool could be a powerful tool to manage
target-dependent vectorizations, while our approach mainly focuses on target-
independent vectorizations in this paper. We could extend our fuzzing approach
by using this abstraction to find target-independent missing opportunities.

5.3 Enhancing Automatic Vectorization algorithm

5.3.1 Extended SLPVectorizer

This paper approached vectorizer performance improvements by lowering the
costs to manage and find vectorization opportunities while much research tries
to improve the qualities of vectorization algorithms. SLP[21, 38] is proposed and
is often used together with LoopVectorize and managed separately. Integrated
Vectorizers are proposed. One is SLP[22], which integrates them, has also been
proposed in recent years, and another is Loop Unrolling unifying approach[26].
Vectorize management is complex because of inherent target dependency, as seen
in this paper. Therefore, black-box approaches like this paper would be valued in
practical compiler development; simultaneously, vectorization becomes powerful
and versatile.

26

Instruction Cost Model management

One of the extensive management task-related vectorizers, Compiler Fuzzing,
might be a variant solution, as is Instructions cost model management. IThemal
[29] proposed the approach using machine learning and claims the effectiveness
of that.

5.4 Superoptimizer

Superoptimizer has also been studied recently in the context of automatic vec-
torization, while it was initially claimed for general optimizations[39, 40]. Z3[36]
is the theorem solver used in them. The two other solvers, souper[40] and
minotaur[5] are LLVM-based super optimizers. The former handles peephole
optimization, and the latter handles vector peephole optimization using LLVM-
level intrinsics. As for minotaur[5], they use alive2[6] to validate the transfor-
mation candidates and calculate the profit by LLVM Machine Code Analyzer,
llvm-mca of the program generated in an enumerative way vector augmented
Intrinsics. Minotaur searches peephole optimization opportunities using vector
intrinsics, but it takes much time to compile because of its enumerative verifica-
tion/computation costs. Also, optimization using reinforcement learning[41] or
other machine learning approaches[42, 43] are proposed. They can be understood
as superoptimizers using machine-learning heuristics.

27

Chapter 6

Conclusion

This study proposes a method of automatic bug search for compiler optimization,
especially for the automatic management of Vectorizer, which is highly target-
dependent and has high complexity. Looking back at the following three elements
of Compiler Fuzzing raised in the Introduction.

1. Test generation

2. Difference testing

3. Analysis

Of the three components, we believe that we have shown that the test gener-
ation and difference testing are effective against LoopVectorize, which is target-
independent automatic vectorization, although it is limited to LLVM. In addition,
the implemented Mutator is very simple, and we believe we were able to demon-
strate its extensibility.

Since test generation and differential testing are not fundamentally indepen-
dent, it is important to have a consistent design. If the method is more formal,
defining the semantics of vector extension instructions like VeGen, and then us-
ing equivalence judgments, it would be good to port the optimization pattern of
vector extension instructions of one target to another target. Designing a Com-
parator using such a method is a future work. We believe that the relatively
simple implementation of Mutator and Comparator in this study is sufficient
to demonstrate the possibility of automatic management of compilers, However,
the theme of solving the difficulty of managing complex compiler optimizations,
including automatic vectorization, has not been fully explored. The framework
used for Fuzzing applies not only to Vectorizer, but also to various compiler issues
such as mis-compilation, performance regression, and compile crashes, and the
design of Mutator and Comparator specialized for these issues can be applied.
We believe it is worth experimenting with various heuristics concerning We hope
this research has contributed in some small way to lowering the cost of compiler
development worldwide.

28

References

[1] “Intel® advanced vector extensions 10,” July 2023. [Online]. Available:
https://cdrdv2-public.intel.com/784267/355989-intel-avx10-spec.pdf

[2] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid,
A. Rico, and P. Walker, “The arm scalable vector extension,” IEEE
Micro, vol. 37, no. 2, p. 26–39, Mar. 2017. [Online]. Available:
http://dx.doi.org/10.1109/MM.2017.35

[3] “How mojo gets a 35,000x speedup over python,” Decem-
ber 2023. [Online]. Available: https://www.modular.com/blog/
how-mojo-gets-a-35-000x-speedup-over-python-part-1

[4] Y. Chen, C. Mendis, M. Carbin, and S. Amarasinghe, “Vegen: A
vectorizer generator for simd and beyond,” in Proceedings of the 26th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 902–914. [Online].
Available: https://doi.org/10.1145/3445814.3446692

[5] Z. Liu, S. Mada, and J. Regehr, “Minotaur: A simd-oriented synthesizing
superoptimizer,” 2023.

[6] N. P. Lopes, J. Lee, C.-K. Hur, Z. Liu, and J. Regehr, “Alive2:
Bounded translation validation for llvm,” in Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, ser. PLDI 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 65–79. [Online]. Available:
https://doi.org/10.1145/3453483.3454030

[7] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c compilers,” SIGPLAN Not., vol. 46, no. 6, p. 283–294, jun 2011.
[Online]. Available: https://doi.org/10.1145/1993316.1993532

[8] M. Sharma, P. Yu, and A. F. Donaldson, “Rustsmith: Random differential
compiler testing for rust,” in Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2023. New York, NY, USA: Association for Computing Machinery, 2023, p.
1483–1486. [Online]. Available: https://doi.org/10.1145/3597926.3604919

[9] J. Liu, J. Lin, F. Ruffy, C. Tan, J. Li, A. Panda, and L. Zhang,
“Nnsmith: Generating diverse and valid test cases for deep learning
compilers,” in Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems,
Volume 2, ser. ASPLOS 2023. New York, NY, USA: Association

29

for Computing Machinery, 2023, p. 530–543. [Online]. Available:
https://doi.org/10.1145/3575693.3575707

[10] T. Theodoridis, M. Rigger, and Z. Su, “Finding missed optimizations
through the lens of dead code elimination,” in Proceedings of the 27th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 697–709. [Online].
Available: https://doi.org/10.1145/3503222.3507764

[11] T. L. Wang, Y. Tian, Y. Dong, Z. Xu, and C. Sun, “Compilation
consistency modulo debug information,” in Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ser. ASPLOS 2023. New
York, NY, USA: Association for Computing Machinery, 2023, p. 146–158.
[Online]. Available: https://doi.org/10.1145/3575693.3575740

[12] S.-H. L. et al., “Ubfuzz: Uncovering undefined behavior in c programs
for security,” 2023. [Online]. Available: https://shao-hua-li.github.io/files/
2024 ASPLOS UBFUZZ.pdf

[13] “x86/x64 simd instruction list (sse to avx512),” December 2023. [Online].
Available: https://www.officedaytime.com/simd512e/

[14] “The llvm compiler infrastructure,” December 2023. [Online]. Available:
https://llvm.org/

[15] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong pro-
gram analysis & transformation,” in Proceedings of the International Sympo-
sium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization, ser. CGO ’04. USA: IEEE Computer Society, 2004, p. 75.

[16] “Cgo 2022 keynote: Compiler 2.0 by saman amarasinghe,” December
2023. [Online]. Available: https://www.youtube.com/results?search query=
compiler+2.0

[17] “Global instruction selection,” December 2023. [Online]. Available:
https://llvm.org/docs/GlobalISel/index.html

[18] T. Jayatilaka, H. Ueno, G. Georgakoudis, E. Park, and J. Doerfert,
“Towards compile-time-reducing compiler optimization selection via
machine learning,” in 50th International Conference on Parallel Processing
Workshop, ser. ICPP Workshops ’21. New York, NY, USA: Association
for Computing Machinery, 2021. [Online]. Available: https://doi.org/10.
1145/3458744.3473355

[19] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “Mlir: A compiler
infrastructure for the end of moore’s law,” 2020.

[20] “Cglobal instruction selectionirct: Lifting hardware development out
of the 20th century” by andrew lenharth, and chris lattner at
llvm developer meeting 2021,” December 2023. [Online]. Available:
https://www.youtube.com/watch?v=ee01 yHjs9k

30

[21] S. Larsen and S. Amarasinghe, “Exploiting superword level parallelism with
multimedia instruction sets,” SIGPLAN Not., vol. 35, no. 5, p. 145–156,
may 2000. [Online]. Available: https://doi.org/10.1145/358438.349320

[22] Y. Chen, C. Mendis, and S. Amarasinghe, “All you need is superword-level
parallelism: Systematic control-flow vectorization with slp,” in Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, ser. PLDI 2022. New York, NY,
USA: Association for Computing Machinery, 2022, p. 301–315. [Online].
Available: https://doi.org/10.1145/3519939.3523701

[23] V. Porpodas and T. M. Jones, “Throttling automatic vectorization: When
less is more,” in 2015 International Conference on Parallel Architecture and
Compilation (PACT), 2015, pp. 432–444.

[24] V. Porpodas, A. Magni, and T. M. Jones, “Pslp: Padded slp automatic
vectorization,” in Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, ser. CGO ’15. USA:
IEEE Computer Society, 2015, p. 190–201.

[25] V. Porpodas, R. C. O. Rocha, E. Brevnov, L. F. W. Góes, and T. Mattson,
“Super-node slp: Optimized vectorization for code sequences containing op-
erators and their inverse elements,” in Proceedings of the 2019 IEEE/ACM
International Symposium on Code Generation and Optimization, ser. CGO
2019. IEEE Press, 2019, p. 206–216.

[26] R. C. O. Rocha, V. Porpodas, P. Petoumenos, L. F. W. Góes, Z. Wang,
M. Cole, and H. Leather, “Vectorization-aware loop unrolling with
seed forwarding,” in Proceedings of the 29th International Conference
on Compiler Construction, ser. CC 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1–13. [Online]. Available:
https://doi.org/10.1145/3377555.3377890

[27] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan,
L. Gan, G. Yang, and D. Qian, “The deep learning compiler: A
comprehensive survey,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 3, p. 708–727, Mar. 2021. [Online]. Available:
http://dx.doi.org/10.1109/TPDS.2020.3030548

[28] “2013 llvm developers’ meeting: ”vectorization in llvm”,” December 2023.
[Online]. Available: https://youtu.be/TVV5v5R43nA?feature=shared

[29] C. Mendis, A. Renda, D. Amarasinghe, and M. Carbin, “Ithemal: Accurate,
portable and fast basic block throughput estimation using deep neural
networks,” in Proceedings of the 36th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp. 4505–4515.
[Online]. Available: https://proceedings.mlr.press/v97/mendis19a.html

[30] C. Sun, V. Le, Q. Zhang, and Z. Su, “Toward understanding compiler
bugs in gcc and llvm,” in Proceedings of the 25th International Symposium
on Software Testing and Analysis, ser. ISSTA 2016. New York, NY,
USA: Association for Computing Machinery, 2016, p. 294–305. [Online].
Available: https://doi.org/10.1145/2931037.2931074

31

[31] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code mutation,”
SIGPLAN Not., vol. 51, no. 10, p. 849–863, oct 2016. [Online]. Available:
https://doi.org/10.1145/3022671.2984038

[32] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case
reduction for c compiler bugs,” SIGPLAN Not., vol. 47, no. 6, p. 335–346,
jun 2012. [Online]. Available: https://doi.org/10.1145/2345156.2254104

[33] D. Kästner, X. Leroy, S. Blazy, B. Schommer, M. Pister, and C. Ferdinand,
“Compcert - a formally verified optimizing compiler,” 01 2016.

[34] D. Callahan, J. Dongarra, and D. Levine, “Vectorizing compilers: A test
suite and results,” in Proceedings of the 1988 ACM/IEEE Conference on
Supercomputing, ser. Supercomputing ’88. Washington, DC, USA: IEEE
Computer Society Press, 1988, p. 98–105.

[35] “Tsvc2,” December 2023. [Online]. Available: https://github.com/
UoB-HPC/TSVC 2

[36] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proceed-
ings of the Theory and Practice of Software, 14th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
ser. TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-Verlag, 2008, p.
337–340.

[37] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceedings
of the Annual Conference on USENIX Annual Technical Conference, ser.
ATEC ’05. USA: USENIX Association, 2005, p. 41.

[38] I. Rosen, D. Nuzman, and A. Zaks, “Loop-aware slp in gcc,” pp. 131–142,
01 2007.

[39] H. Massalin, “Superoptimizer: A look at the smallest program,” SIGARCH
Comput. Archit. News, vol. 15, no. 5, p. 122–126, oct 1987. [Online].
Available: https://doi.org/10.1145/36177.36194

[40] R. Sasnauskas, Y. Chen, P. Collingbourne, J. Ketema, G. Lup, J. Taneja,
and J. Regehr, “Souper: A synthesizing superoptimizer,” 2018.

[41] D. J. Mankowitz, A. Michi, A. Zhernov, M. Gelmi, M. Selvi, C. Paduraru,
E. Leurent, S. Iqbal, J.-B. Lespiau, A. Ahern, T. Köppe, K. Millikin,
S. Gaffney, S. Elster, J. Broshear, C. Gamble, K. Milan, R. Tung,
M. Hwang, T. Cemgil, M. Barekatain, Y. Li, A. Mandhane, T. Hubert,
J. Schrittwieser, D. Hassabis, P. Kohli, M. Riedmiller, O. Vinyals, and
D. Silver, “Faster sorting algorithms discovered using deep reinforcement
learning,” Nature, vol. 618, no. 7964, pp. 257–263, 2023. [Online]. Available:
https://doi.org/10.1038/s41586-023-06004-9

[42] C. Mendis, C. Yang, Y. Pu, S. Amarasinghe, and M. Carbin, Compiler
Auto-Vectorization with Imitation Learning. Red Hook, NY, USA: Curran
Associates Inc., 2019.

[43] A. Haj-Ali, N. K. Ahmed, T. Willke, Y. S. Shao, K. Asanovic, and I. Stoica,
“Neurovectorizer: End-to-end vectorization with deep reinforcement
learning,” in Proceedings of the 18th ACM/IEEE International Symposium
on Code Generation and Optimization, ser. CGO 2020. New York, NY,

32

USA: Association for Computing Machinery, 2020, p. 242–255. [Online].
Available: https://doi.org/10.1145/3368826.3377928

33

