
Inference of polynomial invariants
for imperative programs

[Cachera+, SAS12]

Kohei Asano

1

☀ Create a poster that summarize Cacheras’ work[SAS12]

☀ Implement it in Rust from almost scratch

→ In this presentation, I presents summary of Cacheras’ work[SAS12],
and introduce few related work.

What I did in the undergraduate.

2

☀ Presents a sound method of computing polynomial equality invariants
for imperative programs

▶ Syntax is restricted to polynomial (dis)equality conditions and assignments.

☀ Presents a fast polynomial invariant inference method

Summary of Cachera et al.,[SAS12]

3

Input: 
 Imperative program

Output:  
Polynomial equality invariants  

at the end of a program(post condition)

Table of Contents

☀ Motivation and Overview

☀ Semantics

☀ Fast inference of invariants

☀ Related work

4

Table of Contents

Table of Contents

☀ Motivation and Overview
▶ Motivation and Definition for polynomial invariant

▶ Overview of polynomial invariant computation in this work

☀ Semantics

☀ Fast inference of invariants

☀ Related work

5

Table of Contents

☀Safety Verification, Termination Analysis

☀ Inferring Complexity bounds [Breck+ POPL20]

6

What are invariants good for?

→ This assertion never fails, because
is invariant at location (line 7).l7

☀Safety Verification, Termination Analysis

☀ (inequality invariants) Inferring Complexity bounds [Breck+ POPL20]

7

What are invariants good for?

→ This assertion never fails,

→ This function call takes exponential time in in the worst case.n

auxiliary variable

In this slides represents all of program states.
☀ (First-order) Assertion , which doesn’t contain any quantifiers, is Invariant at location

 is true whatever program state reaching at .

☀ is polynomial (equality) invariant at
Invariant at location can be written as

 are program variables

In other words, invariants are any over-approximations of reachable sets,

polynomial invariants are any over-approximations by ideals.

ℝm

φ l

: ⟺ φ l

φ l

: ⟺ φ l

φ(x1, . . . , xm) = ⋀
i

pi(x1, . . , xm) = 0 pi ∈ ℝ[x1, . . . xm], x1, . . . xm

8

Definition of Polynomial invariant

is an invariant at location (line 7).l7

In this slides represents all of program states.
☀ (First-order) Assertion , which doesn’t contain any quantifiers, is Invariant at location

 is true whatever program state reaching at .

☀ is polynomial (equality) invariant at
Invariant at location can be written as

 are program variables

Invariants can be seen as any over-approximations of reachable sets,

polynomial invariants can be seen as any over-approximations of reachable sets by ideals.

ℝm

φ l

: ⟺ φ l

φ l

: ⟺ φ l

φ(x1, . . . , xm) = ⋀
i

pi(x1, . . , xm) = 0 pi ∈ ℝ[x1, . . . xm], x1, . . . xm

9

Definition of Polynomial invariant

 Equation systems≈

is an invariant at location (line 7).l7

This work uses Abstract Interpretation on Ideal Domain based on
following Galois Connection to compute polynomial invariant.

10

Approximation by Ideal Domain

S

γ(I) I

Concrete Domain Abstract Domain

γ

α(S)
α

⊇ ⊇

(Real Ideals)(States’ power sets)

𝒫(ℝm)

Galois Connection

Define Concrete Weakest Precondition Predicate
Transformer(WPPT) and Abstract WPPT  
to ensure

1. Generate fixed degree Generic Template and compute  

WP in Abstract Domain

2. Solve a constraint and ensure is
a polynomial invariant.

⟨g⟩

⟨g⟩

⟨g⟩ ≡ ⟨0⟩ g = 0

11

Overview of polynomial invariant computation in this work

Define Concrete and Abstract Weakest Precondition Predicate
Transformer(WPPT) to ensure

Concrete Domain

12

Overview of polynomial invariant computation in this work

Abstract Domain: ℐ

 : Forward Denotational Semantics
 : Concrete WPPT
 : Abstract WPPT
 : Generic Templates with parameters

1. Generate fixed degree Generic Template and compute WP
in Abstract Domain

⟨g⟩ ⟨g⟩

13

Overview of polynomial invariant computation in this work

 : Forward Denotational Semantics
 : Concrete WPPT
 : Abstract WPPT
 : Generic Templates with parameters

⟨g⟩ = ⟨a5x2 + a4xy + a3y2 + a2x + a1y + a0⟩

⟨g⟩

Example of degree 2 most Generic Template with x, y
Abstract Domain: ℐConcrete Domain

2. Solve a constraint and ensure is
a polynomial invariant.

⟨g⟩ ≡ ⟨0⟩ g = 0

14

Overview of polynomial invariant computation in this work

 : Forward Denotational Semantics
 : Concrete WPPT
 : Abstract WPPT
 : Generic Templates with parameters

⟨g⟩γ(⟨g⟩)

⟨g⟩ ≡ ⟨0⟩

Abstract Domain: ℐConcrete Domain

ℝm

Table of Contents

☀ Motivation and Overview

☀ Semantics
▶ Syntax, Operational Semantics

▶ WPPT(Weakest Precondition predicate transformer), Abstract WPPT

▶ Correctness

☀ Fast inference of invariants

☀ Related work

15

Table of Contents

☀The imperative language syntax of which is restricted to polynomial guards
and assignments
▶ A variant of Language IMP[Winskel, 1993]
▶ No functions

Syntax

16

☀Standard Operational Semantics

Operational Semantics

17

☀Compute Weakest (liberal) precondition  
from program and post-condition . c S

Concrete WPPT(Weakest Precondition Predicate Transformer)

18

Greatest fix point operator induce partial correctness

Generally, holds.

Example of Concrete WPPT Computation

19

→partial correctness{x ∈ ℝ}c{x = 1}

Generally, holds.

Example of Concrete WPPT Computation

20

→partial correctness{x ∈ ℝ}c{x = 1}

Generally, holds.

Example of Concrete WPPT Computation

21

→partial correctness{x ∈ ℝ}c{x = 1}

→total correctness[x ∈ ℤ ∧ x ≤ 1]c[x = 1]

☀Compute Polynomial Weakest precondition  
from program and polynomial post-condition . c I

Abstract WPPT

22

: an ideal generated by remainders when ’s generators are divided by .Rem(I, p) I p

: an ideal generated by sum of ’s generator I ⊓♯ J I and J

☀ Interpretation of

Example of Computing Abstract WPPT

23

Abstract Domain

: Graded reverse lexicographical orderRem(f, p)

☀ Interpretation of

Example of Computing Abstract WPPT

24

Abstract Domain

: Graded reverse lexicographical orderRem(f, p)

☀ Interpretation of

Example of Computing Abstract WPPT

25

Concrete Domain

Abstract Domain

: Graded reverse lexicographical orderRem(f, p)

proved by structural induction with properties of ideals, and transfer lemma.

 and

 is polynomial invariant

ensure the Correctness of this work’s method.

Correctness(Soundness)

26

proved by structural induction with properties of ideals, and transfer lemma.

 and

 is polynomial invariant

ensure the Correctness of this work’s method.

Correctness(Soundness)

27

ℝm

γ(⟨g⟩) ⟨g⟩

Concrete Abstract

γ

⟨0⟩

Table of Contents

☀ Motivation and Overview

☀ Semantics

☀ Fast inference of invariants
▶ Complexity problem of ideal fixed point iteration

▶ Avoiding fixed-point iterations

▶ Algorithm, Benchmarks

☀ Related work

28

Table of Contents

Computing in Ideal Domain ensure  
the termination of ascending chain  
but its iteration number upper bound is unknown.

Moreover, Gröbner bases computation, which is necessary to decide the termination
of Kleene Iteration, is EXP-SPACE complete[W. Mayr, 1996]

→ This work try to inference a part of polynomial invariants 
 narrow the search space and shorten the computation 

by avoiding fixed point iteration.
≈

Complexity problem of ideal fixed point iteration

29

(by ordinary inclusion order)

Computing in Ideal Domain ensure  
the termination of ascending chain  
but its iteration number upper bound is unknown.

Moreover, Gröbner bases computation, which is necessary to decide the termination
of Kleene Iteration, is EXP-SPACE complete[W. Mayr, 1996]

→ This work try to inference a part of polynomial invariants 
 narrow the search space and shorten the computation 

by avoiding fixed point iteration.
≈

Complexity problem of ideal fixed point iteration

30

Computing in Ideal Domain ensure  
the termination of ascending chain  
but its iteration number upper bound is unknown.

Moreover, Gröbner bases computation, which is necessary to decide the termination
of Kleene Iteration, is EXP-SPACE complete[W. Mayr, 1996]

→ This work try to inference a part of polynomial invariants 
 narrow the search space and shorten the computation 

by avoiding fixed point iteration.
≈

Complexity problem of ideal fixed point iteration

31

Idea: Focus on loop invariants by a constraint

→ Compute constraints for loop invariants together with loop semantics

☀Correctness for dis-equality guards is given as follows

!! Correctness for equality guards is not given in this work. !!

Avoiding fixed point iteration

32

equality of zeros of polynomialsℝm

Idea: Focus on loop invariants by a constraint

→ Compute constraints for loop invariants together with loop semantics

☀Correctness for dis-equality guards is given as follows

!! Correctness for equality guards is not given in this work. !!

Avoiding fixed point iteration

33

☀Refined Semantics without fixed point computation

Refined Semantics for fast inferece

34

Parametrized Ideals and  
Constraints w.r.t parameters

☀Refined Semantics without fixed point computation

Refined Semantics for fast inferece

35

Ignore while guards,  
and impose constraints which requires  
equality of pre and post loop ideals,

Parametrized Ideals and  
Constraints w.r.t parameters

Input: program , degree ,

Output: a set of polynomials ,

c d

Algorithm

36

Input: program , degree ,

Output: a set of polynomials ,

c d

Algorithm

37

Example of most generic template of degree 3,  
with program variables x, y, z

Monomial numbers are  

where is number of program variables
nHd

n

Example

38

are post conditions, former is not loop invariant.

Example

39

⟹ is invariant.

If we assume  
correspondence of all coefficients 
(sufficient but not necessary).

Table of Contents

☀ Motivation and Overview

☀ Semantics

☀ Fast inference of invariants

☀ Related work

40

Table of Contents

☀Generalized Homogeneous Polynomials for Efficient Template-Based
Nonlinear Invariant Synthesis[Kojima+. SAS16]
▶ Reduce number of monomials in generic templates by focusing on

generalized homogeneous polynomials.

▶ Determine the Generalized degree of polynomials in programs  
by using Dimensional Type Inference.

Related work

41

☀Templates and Recurrences: Better Together[Breck+. POPL20]

▶ Compute non-linear inequality invariants for Non-linearly recursive
programs.

Related work

42

Input: 
 C programs

Output: 
Non-linear inequality invariants.

☀Polynomial Invariant Generation for Non-deterministic Recursive
Programs[Chatterjee+. PLDI20]
▶ Presents semi-complete polynomial inequality invariants generation method

for non-linearly recursive C programs.

▶ Sub-exponential time complexity.

Related work

43

☀Müller-Olm and Seidl(2002). Polynomial Constants Are decidable

☀Sankaranarayanan, Sriram and Sipma, Henny B. and Manna, Zohar
(2004). Non-linear loop invariant generation using Gröbner bases.

☀Bruno Blanchet(2002). Introduction to Abstract Interpretation

☀Deepak Kapur(2004). Automatically Generating Loop Invariants Using
Quantifier Elimination ‒Preliminary Report‒.

☀Glynn Winskel(1993). The Formal Semantics of Programming
Languages: An Introduction

References

44

