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☀ Create a poster that summarize Cacheras’ work[SAS12]  

☀ Implement it in Rust from almost scratch 

→ In this presentation, I presents summary of Cacheras’ work[SAS12], 
and introduce few related work.

What I did in the undergraduate.
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☀ Presents a sound method of computing polynomial equality invariants 
for imperative programs 

▶ Syntax is restricted to polynomial (dis)equality conditions and assignments. 

☀ Presents a fast polynomial invariant inference method 

Summary of Cachera et al.,[SAS12]
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Input: 
 Imperative program

Output:  
Polynomial equality invariants  

at the end of a program(post condition)
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☀Safety Verification, Termination Analysis 

☀ Inferring Complexity bounds [Breck+ POPL20] 
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What are invariants good for?

→ This assertion never fails, because 
is invariant at location (line 7).l7



☀Safety Verification, Termination Analysis 

☀ (inequality invariants) Inferring Complexity bounds [Breck+ POPL20] 
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What are invariants good for?

→ This assertion never fails, 

→ This function call takes exponential time in  in the worst case.n

auxiliary variable



In this slides  represents all of program states. 
☀ (First-order) Assertion , which doesn’t contain any quantifiers, is Invariant at location   

 is true whatever program state reaching at . 

☀  is polynomial (equality) invariant at   
Invariant  at location  can be written as 

 are program variables 

In other words, invariants are any over-approximations of reachable sets,  

polynomial invariants are any over-approximations by ideals.

ℝm

φ l

: ⟺ φ l

φ l

: ⟺ φ l

φ(x1, . . . , xm) = ⋀
i

pi(x1, . . , xm) = 0 pi ∈ ℝ[x1, . . . xm], x1, . . . xm
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Definition of Polynomial invariant

is an invariant at location (line 7).l7
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Definition of Polynomial invariant

 Equation systems≈

is an invariant at location (line 7).l7



This work uses Abstract Interpretation on Ideal Domain based on 
following Galois Connection to compute polynomial invariant. 
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Approximation by Ideal Domain

S

γ(I) I

Concrete Domain Abstract Domain

γ

α(S)
α

⊇ ⊇

(Real Ideals)(States’ power sets)

𝒫(ℝm)

Galois Connection



Define Concrete Weakest Precondition Predicate 
Transformer(WPPT)        and Abstract WPPT      
to ensure   

1. Generate fixed degree Generic Template  and compute  

WP      in Abstract Domain 

2. Solve a constraint      and                             ensure  is 
a polynomial invariant. 

⟨g⟩

⟨g⟩

⟨g⟩ ≡ ⟨0⟩ g = 0
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Overview of polynomial invariant computation in this work



Define Concrete and Abstract Weakest Precondition Predicate 
Transformer(WPPT) to ensure   

Concrete Domain
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Overview of polynomial invariant computation in this work

Abstract Domain: ℐ

 : Forward Denotational Semantics 
 : Concrete WPPT 
 : Abstract WPPT 
 : Generic Templates with parameters 



1. Generate fixed degree Generic Template  and compute WP      
in Abstract Domain 

⟨g⟩ ⟨g⟩

13

Overview of polynomial invariant computation in this work

 : Forward Denotational Semantics 
 : Concrete WPPT 
 : Abstract WPPT 
 : Generic Templates with parameters 

⟨g⟩ = ⟨a5x2 + a4xy + a3y2 + a2x + a1y + a0⟩

⟨g⟩

Example of degree 2 most Generic Template with x, y
Abstract Domain: ℐConcrete Domain



2. Solve a constraint      and                                ensure  is 
a polynomial invariant. 

⟨g⟩ ≡ ⟨0⟩ g = 0
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Overview of polynomial invariant computation in this work

 : Forward Denotational Semantics 
 : Concrete WPPT 
 : Abstract WPPT 
 : Generic Templates with parameters 

⟨g⟩γ(⟨g⟩)

⟨g⟩ ≡ ⟨0⟩

Abstract Domain: ℐConcrete Domain

ℝm



Table of Contents

☀ Motivation and Overview 

☀ Semantics 
▶ Syntax, Operational Semantics 

▶ WPPT(Weakest Precondition predicate transformer), Abstract WPPT 

▶ Correctness 

☀ Fast inference of invariants 

☀ Related work

15

Table of Contents



☀The imperative language syntax of which is restricted to polynomial guards 
and assignments 
▶ A variant of Language IMP[Winskel, 1993] 
▶ No functions 

Syntax
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☀Standard Operational Semantics 

Operational Semantics
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☀Compute Weakest (liberal) precondition  
from program  and post-condition . c S

Concrete WPPT(Weakest Precondition Predicate Transformer)
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Greatest fix point operator induce partial correctness



Generally,                                                     holds.

Example of Concrete WPPT Computation

19

→partial correctness{x ∈ ℝ}c{x = 1}



Generally,                                                     holds.

Example of Concrete WPPT Computation
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→partial correctness{x ∈ ℝ}c{x = 1}



Generally,                                                     holds.

Example of Concrete WPPT Computation

21

→partial correctness{x ∈ ℝ}c{x = 1}

→total correctness[x ∈ ℤ ∧ x ≤ 1]c[x = 1]



☀Compute Polynomial Weakest precondition  
from program  and polynomial post-condition . c I

Abstract WPPT
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: an ideal generated by remainders when ’s generators are divided by .Rem(I, p) I p

: an ideal generated by sum of ’s generator I ⊓♯ J I and J



☀ Interpretation of  

Example of Computing Abstract WPPT
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Abstract Domain

: Graded reverse lexicographical orderRem( f, p)



☀ Interpretation of  

Example of Computing Abstract WPPT
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Abstract Domain

: Graded reverse lexicographical orderRem( f, p)



☀ Interpretation of  

Example of Computing Abstract WPPT
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Concrete Domain

Abstract Domain

: Graded reverse lexicographical orderRem( f, p)



proved by structural induction with properties of ideals, and transfer lemma. 

                                                                              and 

                                             is polynomial invariant 

ensure the Correctness of this work’s method.

Correctness(Soundness)
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proved by structural induction with properties of ideals, and transfer lemma. 

                                                                              and 

                                             is polynomial invariant 

ensure the Correctness of this work’s method.

Correctness(Soundness)
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ℝm

γ(⟨g⟩) ⟨g⟩

Concrete Abstract 

γ

⟨0⟩
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Computing in Ideal Domain ensure  
the termination of ascending chain  
but its iteration number upper bound is unknown. 

Moreover, Gröbner bases computation, which is necessary to decide the termination 
of Kleene Iteration, is EXP-SPACE complete[W. Mayr, 1996] 

→ This work try to inference a part of polynomial invariants 
 narrow the search space and shorten the computation 

by avoiding fixed point iteration.
≈

Complexity problem of ideal fixed point iteration
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(by ordinary inclusion order)
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Computing in Ideal Domain ensure  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≈

Complexity problem of ideal fixed point iteration
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Idea: Focus on loop invariants by a constraint 

→ Compute constraints for loop invariants together with loop semantics 

☀Correctness for dis-equality guards is given as follows 

!! Correctness for equality guards is not given in this work. !! 

Avoiding fixed point iteration
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equality of  zeros of polynomialsℝm



Idea: Focus on loop invariants by a constraint 

→ Compute constraints for loop invariants together with loop semantics 

☀Correctness for dis-equality guards is given as follows 

!! Correctness for equality guards is not given in this work. !! 

Avoiding fixed point iteration
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☀Refined Semantics without fixed point computation 

Refined Semantics for fast inferece

34

Parametrized Ideals and  
Constraints w.r.t parameters



☀Refined Semantics without fixed point computation 

Refined Semantics for fast inferece
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Ignore while guards,  
and impose constraints which requires  
equality of pre and post loop ideals, 

Parametrized Ideals and  
Constraints w.r.t parameters



Input: program , degree ,  

Output: a set of polynomials   , 

c d

Algorithm
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Input: program , degree ,  

Output: a set of polynomials   , 

c d

Algorithm
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Example of most generic template of degree 3,  
with program variables x, y, z

Monomial numbers are   

where  is number of program variables
nHd

n



Example
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are post conditions, former is not loop invariant.



Example
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⟹ is invariant.

If we assume  
correspondence of all coefficients 
(sufficient but not necessary).
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☀Generalized Homogeneous Polynomials for Efficient Template-Based 
Nonlinear Invariant Synthesis[Kojima+. SAS16] 
▶ Reduce number of monomials in generic templates by focusing on 

generalized homogeneous polynomials. 

▶ Determine the Generalized degree of polynomials in programs  
by using Dimensional Type Inference.

Related work
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☀Templates and Recurrences: Better Together[Breck+. POPL20] 

▶ Compute non-linear inequality invariants for Non-linearly recursive 
programs. 

Related work
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Input: 
 C programs

Output: 
Non-linear inequality invariants.



☀Polynomial Invariant Generation for Non-deterministic Recursive 
Programs[Chatterjee+. PLDI20] 
▶ Presents semi-complete polynomial inequality invariants generation method 

for non-linearly recursive C programs. 

▶ Sub-exponential time complexity.

Related work
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