Symbolic Differentiation Optimization

Kohei Asano Kobayashi Lab, University of Tokyo

Symbolic Differentiation and its improvement Optimization of Derivative Evaluation

Outline

K Symbolic Differentiation and its improvement

Optimization of Derivative Evaluation

Outline

Improvement of Symbolic Differentiation

We can find analogies between Symbolic Differentiation and Automatic Differentiation through the improvement of Symbolic one. [Soeren, 2020]

$f(x) = (4 + \sin(x)) \cdot \cos(\sin(x)) =$

Expression Tree

Symbolic Differentiation

 $\left(\frac{d}{dx}\right)\left(\left(4+\sin(x)\right)\cdot\cos(\sin(x))\right)$

Symbolic Differentiation

 $\left(\frac{d}{dx}\right)\left(\left(4+\sin(x)\right)\cdot\cos(\sin(x))\right)$

 $= \cos(x) \cdot \cos(\sin(x)) - (4 + \sin(x)) \cdot \sin(\sin(x)) \cdot \cos(x) =$

Symbolic Differentiation

 $\left(\frac{d}{dx}\right)\left((4+\sin(x))\cdot\cos(\sin(x))\right)$

 $\left(\frac{d}{dx}\right)\left((4+\sin(x))\cdot\cos(\sin(x))\right)$

 $\left(\frac{d}{dx}\right)\left((4+\sin(x))\cdot\cos(\sin(x))\right)$

 $\left(\frac{d}{dx}\right)\left((4+\sin(x))\cdot\cos(\sin(x))\right)$

 $\left(\frac{d}{dx}\right)\left((4+\sin(x))\cdot\cos(\sin(x))\right)$

$$\left(\frac{d}{dx}\right)\left(\left(4+\sin(x)\right)\cdot\cos(\sin(x))\right)$$

 \rightarrow Let's improve !

1. Tree to DAG

2. Introduction of Derivative Graph

1. Tree to DAG(Directed Acyclic Graph)

1. Tree to DAG(Directed Acyclic Graph)

 $f(x) = (4 + \sin(x)) \cdot \cos(\sin(x)) = a(x) \cdot b(x)$

Use new data structure instead of rewriting DAG Let edges have derivative expressions of child-graph.

 $f(x) = (4 + \sin(x)) \cdot \cos(\sin(x)) = a(x) \cdot b(x)$ a(x) = c(x) + d(x) $\frac{\partial f}{\partial a} = \cos(\sin(x))$ c(x) = 4 $d(x) = \sin(x)$ $\frac{\partial a}{\partial c} = 1$ $\frac{\partial a}{\partial c}$

4

 $f(x) = (4 + \sin(x)) \cdot \cos(\sin(x)) = a(x) \cdot b(x)$ a(x) = c(x) + d(x) $b(x) = \cos(d(x))$ c(x) = 4 $d(x) = \sin(e(x))$ e(x) = x $\frac{\partial a}{\partial c} = 1$ $\frac{\partial a}{\partial c}$

Evaluation of Derivative on Derivative Graph

By using chain rule

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial x} + \frac{\partial f}{\partial b} \frac{\partial b}{\partial x}$$

$$= \frac{\partial f}{\partial a} \left(\frac{\partial a}{\partial c} \frac{\partial c}{\partial x} + \frac{\partial a}{\partial d} \frac{\partial d}{\partial x} \right) + \frac{\partial f}{\partial b} \frac{\partial b}{\partial d} \frac{\partial d}{\partial x}$$

$$= \frac{\partial f}{\partial a} \left(\frac{\partial a}{\partial c} \frac{\partial c}{\partial x} + \frac{\partial a}{\partial d} \frac{\partial d}{\partial e} \frac{\partial e}{\partial x} \right) + \frac{\partial f}{\partial b} \frac{\partial b}{\partial d} \frac{\partial d}{\partial e} \frac{\partial e}{\partial x}$$

$$= \frac{\partial f}{\partial a} \frac{\partial a}{\partial d} \frac{\partial d}{\partial e} + \frac{\partial f}{\partial b} \frac{\partial b}{\partial d} \frac{\partial d}{\partial e} \left(\frac{\partial e}{\partial x} = 1, \frac{\partial c}{\partial x} = 1 \right)$$

Sum of Product of paths from X to root

If you store values instead of expressions, it'll be Automatic Differentiation.

Symbolic Differentiation and its improvement

Optimization of Derivative Evaluation

Outline

Optimization of Derivative Evaluation[Guenter, SIGGRAPH2007]

Make Derivative Graphs small by using Dominance Relation of Control Flow Graph

Optimization of Derivative Evaluation[Guenter, SIGGRAPH2007]

- Make Derivative Graphs small by using Dominance Relation of Control Flow Graph *da*
 - Performance improvement could be expected for repetitive evaluation.

 ∂x

Reduce 1 multiplication

Experimental Results

Compare three Symbolic Differentiation methods https://github.com/khei4/sym_diff

evaluation times of single-variable derivative in 5 sec naive expression tree walk: 2995 times derivative graph: 3989 times optimized derivative graph: 5925 times

Original paper shows this method exceeds Automatic Differentiation(CppAD) for repetitive evaluation.

Symbolic Differentiation Improvement can naturally derive Automatic Differentiation.

+ Derivative Evaluation can be optimized by using **Dominance Relation**